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where M is the size of the meta set. Further, to avoid the confirmation bias, we use two differently-initiated models to distill meta set for each other.

e We propose Coupled Confusion Correction Correct Confusion Matrices via Meta-Learning: In our CCC, the corrected confusion matrices are obtained through the following bi-level optimization:

(CCC) to mitigate the influence of annota- .
tion sparsity, where the confusion matrices of 1 M Number of Annotations per Annotator:
annotators can be updated under the supervi- (V™% | = argmin i ZLT”“(H*), s.t., | :
sion of not only its individual annotations but (Vo
also the distilled annotations.

e \We propose to imbalance the distribution of
number of annotations via a Beta distribution,
making the synthetic datasets more consistent
with real-world ones.

e Extensive experiments are conducted on var-
lous datasets, where the results indicate the
superiority of our method.
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ror =T+ V9 denotes the corrected confusion matrix of 7-th annotator with g(r) representing the index of group which the r-th annotator Previous

belongs to. Let £ denotes the cross entropy loss function, the meta loss here is then defined as £7**(8%) = £(f(x7**|67), y[**"*), and the training
loss is L] (T';,,.,0) = £((T" + VIO f(x;10), §7). A(Nx Ry is @ matrix indicating the annotation presence, i.e., A; ; is True if the i-th instance is

labeled by 7-th annotator, and False otherwise.

where T



